Development of ichthyosporeans sheds light on the origin of metazoan multicellularity
نویسندگان
چکیده
To understand the mechanisms involved in the transition from protists to multicellular animals (metazoans), studying unicellular relatives of metazoans is as important as studying metazoans themselves. However, investigations remain poor on the closest unicellular (or colonial) relatives of Metazoa, i.e., choanoflagellates, filastereans and ichthyosporeans. Molecular-level analyses on these protists have been severely limited by the lack of transgenesis tools. Their genomes, however, contain several key genes encoding proteins important for metazoan development and multicellularity, including those involved in cell-cell communication, cell proliferation, cell differentiation, and tissue growth control. Tools to analyze their functions in a molecular level are awaited. Here we report techniques of cell transformation and gene silencing developed for the first time in a close relative of metazoans, the ichthyosporean Creolimax fragrantissima. We propose C. fragrantissima as a model organism to investigate the origin of metazoan multicellularity. By transgenesis, we demonstrate that its colony develops from a fully-grown multinucleate syncytium, in which nuclear divisions are strictly synchronized. It has been hypothesized that metazoan multicellular development initially occurred in the course of evolution through successive rounds of cell division, which were not necessarily be synchronized, or alternatively through cell aggregation. Our findings point to another possible mechanism for the evolution of animal multicellularity, namely, cellularization of a syncytium in which nuclear divisions are synchronized. We believe that further studies on the development of ichthyosporeans by the use of our methodologies will provide novel insights into the origin of metazoan multicellularity.
منابع مشابه
A phylogenomic investigation into the origin of metazoa.
The evolution of multicellular animals (Metazoa) from their unicellular ancestors was a key transition that was accompanied by the emergence and diversification of gene families associated with multicellularity. To clarify the timing and order of specific events in this transition, we conducted expressed sequence tag surveys on 4 putative protistan relatives of Metazoa including the choanoflage...
متن کاملGenesis and expansion of metazoan transcription factor gene classes.
We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Man...
متن کاملEarly evolution of the T-box transcription factor family.
Developmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusively present in metazoans. Here, we report the presence of T-box genes in several nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that ...
متن کاملAn epithelial tissue in Dictyostelium challenges the traditional origin of metazoan multicellularity.
We hypothesize that aspects of animal multicellularity originated before the divergence of metazoans from fungi and social amoebae. Polarized epithelial tissues are a defining feature of metazoans and contribute to the diversity of animal body plans. The recent finding of a polarized epithelium in the non-metazoan social amoeba Dictyostelium discoideum demonstrates that epithelial tissue is not...
متن کاملNotch-Mediated Cell Adhesion
Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and anc...
متن کامل